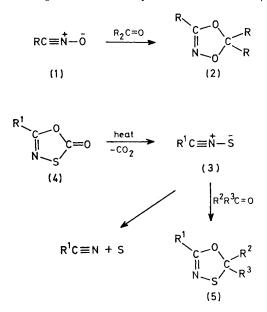
A Novel Synthesis of 1,3,4-Oxathiazoles Using Nitrile Sulphides

By R. MICHAEL PATON* and JOHN F. Ross

(Department of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3]])


and John Crosby*

(Imperial Chemical Industries Ltd., Organics Division, PO Box 42, Hexagon House, Blackley, Manchester M9 3DA)

Summary Nitrile sulphides, generated by thermolysis of 1,3,4-oxathiazol-2-ones, undergo 1,3-dipolar cycloaddition to activated carbonyl groups yielding 1,3,4-oxathiazoles.

WHILE the 1,3-dipolar cycloaddition of nitrile oxides (1) to carbonyl compounds has proved an effective means¹ of preparing 1,3,4-dioxazoles (2), the corresponding reaction for nitrile sulphides (3) has not yet been reported. We find that (3) generated *in situ* by the thermal decarboxylation of 1,3,4-oxathiazol-2-ones (4),² react with chloral, hexa-chloroacetone, and $\alpha\alpha\alpha$ -trifluoroacetophenone, in which the carbonyl groups are activated by electron-withdrawing substituents, to produce 1,3,4-oxathiazoles (5), a rare class of heterocycles accessible only with difficulty by other routes.³

The oxathiazoles (5) were prepared by heating under reflux solutions of (4) (0.01 mol) and the carbonyl compound ($\mathbb{R}^2\mathbb{R}^3\mathbb{C}=O$) (0.05 mol) in xylene (50 ml) until h.p.l.c. analysis† showed complete consumption of (4). Removal of the solvent and excess of $\mathbb{R}^2\mathbb{R}^3\mathbb{C}=O$ afforded (5), sulphur, and the corresponding nitrile, which could be separated by

1 110000.	r,o,r onatinason	os (o, produc	Jou by readenon or (1)	active ac	carbonyr compoundor
R1	\mathbb{R}^2	\mathbb{R}^3	Reaction time/h	% Yieldª	M.p. (b.p., mmHg)/°C
Ph	CCl ₃	н	26	59	678
\mathbf{Ph}	CCl ₃	CCl _a	8	54	534
4-MeOC ₆ H	L CCL	н	5	76	823
4-MeOC,H	CCI,	CCl _a	5	57	878
4-MeOC ₆ H	CF ₃	Ph	4	28 ^b	867
4-ClC ₆ H₄	CCĬ,	CCl ₃	28	35°	1045
$4-ClC_{6}H_{4}$	CF,	Ph	12.5	18ª	77
Ňе	CCI ₃	н	5	62	49·55 0
Me	CCl,	CCl _s	6	56	70
Pr ⁿ	CCI,	CCI,	5	44	(135,0.003)

TABLE. 1,3,4-Oxathiazoles (5) produced by reaction of (4) with activated carbonyl compounds.

^a All the adducts, which are new compounds, gave satisfactory elemental analyses and have spectroscopic properties consistent with their structures. ^b 59% 4-Methoxybenzonitrile by-product. ^c 58% 4-Chlorobenzonitrile by-product. ^d 65% 4-Chlorobenzonitrile by-product.

† 25% Water deactivated alumina, eluted with 80% hexane-20% methylene chloride (25% water saturated).

J.C.S. CHEM. COMM., 1979

distillation and/or recrystallisation. The oxathiazoles prepared in this manner are listed in the Table, together with the reaction times and yields of isolated products. The formation of nitrile and sulphur by-products is a common feature of nitrile sulphide reactions and has been attributed² to fragmentation of (3) competing with the cycloaddition process.

These results extend the range of known nitrile sulphide cycloadditions, previously restricted to reactions with alkyne,⁴ alkene⁵ and nitrile² dipolarophiles, and suggest yet further scope for heterocycle synthesis.

(Received, 6th September 1979; Com. 948.)

 ¹ C. Grundmann and P. Grünanger, 'The Nitrile Oxides,' Springer-Verlag, West Berlin and Heidelberg, 1971, pp. 120-3.
² R. K. Howe and J. E. Franz, J. Org. Chem., 1974, 39, 962.
³ E.g. E. M. Burgess and H. R. Penton, J. Amer. Chem. Soc., 1973, 95, 279.
⁴ R. K. Howe, T. A. Gruner, L. G. Carter, L. L. Black, and J. E. Franz, J. Org. Chem., 1978, 43, 3736.
⁵ J. R. Grunwell and S. L. Dye, Tetrahedron Letters, 1975, 1739; R. K. Howe and J. E. Franz, J. Org. Chem., 1978, 43, 3742; R. M. Paton, J. F. Ross, and J. Crosby, unpublished observations.